Stonks.jl

Julia library for standardizing financial data retrieval and storage from multiple APIs.

MIT License

Stars
53
Committers
2

Stonks.jl is the Julia library that lets you access and store financial data from multiple APIs into a unified data model. It gives you the tools to generalize the data retrieval and storage from any API with a simple interface in a type-safe manner.



Features

  • Designed to work with several APIs in an agnostic way, where several APIs are capable of returning the same data.
  • Comes with a pre-defined data model (types), but you're free to design your own types.
  • Store and update data locally with ease using the FileStore, which can work with any file format. Supports data partitioning, writes are atomic, schema validation on read and write. Incrementally update everything in your datastore with just one function.
  • Batching of multiple stock tickers if the API resource allows it, thus minimizing the number of requests.
  • Asynchronous request processing. Multiple requests will processed asynchronously and multi-threaded, thus minimizing the network wait time.
  • Silent by design. The main exposed functions for fetching and saving data don't throw an error, making your program crash. Instead, it will return the error with an explanative message of what went wrong.

API summary

The following data models and functions are exposed by the library. Typically, Alphavantage client has more historical data.


Basic Usage

Get price time series

using Dates
using Stonks

# Create a  client
client = YahooClient("<api_key>") # or AlphavantageJSONClient(<api_key>)
julia> ref_date = Date("2022-02-18")
2022-02-18

# to can be ommited, defaults to current day.
julia> get_price("AAPL", client; from=ref_date-Day(1), to=ref_date)
# 2-element Vector{AssetPrice}:
 AssetPrice("AAPL", Date("2022-02-18"), 167.3, 169.82, 170.5413, 166.19, missing, 82772674)
 AssetPrice("AAPL", Date("2022-02-17"), 168.88, 171.03, 171.91, 168.47, missing, 69589344)
 # you can omit the client if you have the correct environment variables set
julia> length(ENV["ALPHAVANTAGE_TOKEN"]) # ENV["YAHOOFINANCE_TOKEN"] works as well
16
julia> prices = get_price(["AAPL", "MSFT"]; from=ref_date-Day(2), to=ref_date) 
# 6-element Vector{AssetPrice}:
 AssetPrice("AAPL", Date("2022-02-18"), 167.3, 169.82, 170.5413, 166.19, missing, 82772674)
 AssetPrice("AAPL", Date("2022-02-17"), 168.88, 171.03, 171.91, 168.47, missing, 69589344)
 AssetPrice("AAPL", Date("2022-02-16"), 172.55, 171.85, 173.34, 170.05, missing, 61177398)
 AssetPrice("MSFT", Date("2022-02-18"), 287.93, 293.05, 293.86, 286.305, missing, 34264008)
 AssetPrice("MSFT", Date("2022-02-17"), 290.73, 296.36, 296.8, 290.0, missing, 32461580)
 AssetPrice("MSFT", Date("2022-02-16"), 299.5, 298.365, 300.87, 293.68, missing, 29982121)
# you can query each symbol with different time intervals
julia> prices = get_price([
  ("AAPL", Date("2022-02-15"), Date("2022-02-16")),
  ("MSFT", Date("2022-02-14"), Date("2022-02-15")),
])
# 4-element Vector{AssetPrice}:
 AssetPrice("MSFT", Date("2022-02-15"), 300.47, 300.008, 300.8, 297.02, missing, 27379488)
 AssetPrice("MSFT", Date("2022-02-14"), 295.0, 293.77, 296.76, 291.35, missing, 36359487)
 AssetPrice("AAPL", Date("2022-02-16"), 172.55, 171.85, 173.34, 170.05, missing, 61177398)
 AssetPrice("AAPL", Date("2022-02-15"), 172.79, 170.97, 172.95, 170.25, missing, 64286320)

Get asset information

julia> get_info("AAPL")
# 1-element Vector{AssetInfo}:
 AssetInfo("AAPL", "USD", "Apple Inc", "Common Stock", "NASDAQ", "USA", "Electronic Computers", "Technology", missing, missing)

julia> get_info(["AAPL", "MSFT"])
# 2-element Vector{AssetInfo}:
 AssetInfo("MSFT", "USD", "Microsoft Corporation", "Common Stock", "NASDAQ", "USA", "Services-Prepackaged Software", "Technology", missing, missing)
 AssetInfo("AAPL", "USD", "Apple Inc", "Common Stock", "NASDAQ", "USA", "Electronic Computers", "Technology", missing, missing)

Get exchange rates

# Same API as get_price. the symbol needs to be a currency pair like $base/$quote,
# each consisting of exactly 3 characters.
julia> ref_date = Date("2022-02-18")
julia> get_exchange_rate("EUR/USD", from=ref_date-Day(1), to=ref_date)
# 3-element Vector{ExchangeRate}:
 ExchangeRate("EUR", "USD", Date("2022-02-18"), 1.13203)
 ExchangeRate("EUR", "USD", Date("2022-02-17"), 1.13592)
julia> get_exchange_rate(["EUR/USD", "USD/CAD"], from=ref_date-Day(1), to=ref_date)
# 4-element Vector{ExchangeRate}:
 ExchangeRate("EUR", "USD", Date("2022-02-18"), 1.13203)
 ExchangeRate("EUR", "USD", Date("2022-02-17"), 1.13592)
 ExchangeRate("USD", "CAD", Date("2022-02-18"), 1.2748)
 ExchangeRate("USD", "CAD", Date("2022-02-17"), 1.2707)
# Also works with []Tuple{String, Date} or []Tuple{String, Date, Date}
julia>get_exchange_rate([
  ("EUR/USD", Date("2022-02-15"), Date("2022-02-16")),
  ("USD/CAD", Date("2022-02-14"), Date("2022-02-15")),
])
# 4-element Vector{ExchangeRate}:
...

Get financial statements

symbol, from_date = "AAPL", Date("2020-01-01")
financials = Dict()
financials[:balance_sheet] = get_balance_sheet(symbol; from=from_date)
financials[:income_statement] = get_income_statement(symbol; from=from_date)
financials[:cashflow_statement] = get_cashflow_statement(symbol; from=from_date)
financials[:earnings] = get_earnings(symbol; from=from_date)

julia> map(x -> (x.date, x.total_revenue, x.net_income), financials[:income_statement])
# 10-element Vector{Tuple{Date, Int64, Int64}}:
 (Date("2021-09-30"), 363172000000, 94680000000)
 (Date("2020-09-30"), 271642000000, 57411000000)
 (Date("2021-12-31"), 123251000000, 34630000000)

julia> financials[:balance_sheet][1:2]
# 6-element Vector{BalanceSheet}:
 BalanceSheet("AAPL", "yearly", Date("2021-09-25"), "USD", 351002000000, 287912000000, 63090000000, 34940000000, 51506000000, 6580000000, 27699000000, 14111000000, 134836000000, 49527000000, missing, 127877000000, missing, missing, 54763000000, missing, missing, 53577000000, 125481000000, missing, missing, missing, 109106000000, missing, missing, missing, 0, 5562000000, 57365000000, missing)
 BalanceSheet("AAPL", "yearly", Date("2020-09-26"), "USD", 323888000000, 258549000000, 65339000000, 38016000000, 37445000000, 4061000000, 52927000000, 11264000000, 143713000000, 45336000000, missing, 100887000000, missing, missing, 42296000000, missing, missing, 47867000000, 105392000000, missing, missing, missing, 98667000000, missing, missing, missing, 0, 14966000000, 50779000000, missing)

julia> financials[:earnings] |> data -> filter(x -> x.frequency == "quarterly", data)
# 4-element Vector{Earnings}:
 Earnings("AAPL", "quarterly", Date("2021-09-30"), "USD", Float16(1.24), Float16(1.24))
 Earnings("AAPL", "quarterly", Date("2021-12-31"), "USD", Float16(2.1), Float16(1.89))
 Earnings("AAPL", "quarterly", Date("2022-03-31"), "USD", Float16(1.52), Float16(1.43))
 Earnings("AAPL", "quarterly", Date("2022-06-30"), "USD", Float16(1.2), Float16(1.16))


Tables.jl integration

All types inheriting from AbstractStonksRecord can be converted to a Tables.jl interface of named tuples, using to_table. Types from the original model are persisted. Currently only tested with flat data types.

julia> data
# 4-element Vector{AssetPrice}:
 AssetPrice("MSFT", Date("2022-02-23"), 280.27, 290.18, 291.7, 280.1, missing, 37811167)
 AssetPrice("AAPL", Date("2022-02-23"), 160.07, 165.54, 166.15, 159.75, missing, 90009247)
julia> data |> to_table
(
  symbol = ["MSFT", "MSFT", "AAPL", "AAPL"], 
  date = [Date("2022-02-23"), Date("2022-02-22"), Date("2022-02-23"), Date("2022-02-22")],
  close = [280.27, 287.72, 160.07, 164.32], 
  open = Union{Missing, Float64}[290.18, 285.0, 165.54, 164.98], 
  high = Union{Missing, Float64}[291.7, 291.54, 166.15, 166.69], 
  low = Union{Missing, Float64}[280.1, 284.5, 159.75, 162.15], 
  close_adjusted = Union{Missing, Float64}[missing, missing, missing, missing], 
  volume = Union{Missing, Integer}[37811167, 41569319, 90009247, 90457637]
)


Persisting data

Using a FileStore, you can easily persist and incrementally update data having at least one identifier and one time dimension. Default file format is CSV, but you can plug in any format you wish. See example for custom file formats.

using Chain, Dates
using Stonks

dest = joinpath(@__DIR__, "data/prices")
ds = FileStore{AssetPrice}(; path=dest, ids=[:symbol], partitions=[:symbol], time_column="date")
d_end = Date("2022-03-06")
2022-03-06

symbols = ["AAPL", "MSFT"]
data = get_price(symbols; from=d_end-Day(7), to=d_end-Day(5))

save(ds, data)
println(readdir(dest))
["symbol=AAPL", "symbol=MSFT"] #data stored in partitions

load(ds)[1:2] # types are persisted
# 2-element Vector{AssetPrice}:
 AssetPrice("AAPL", Date("2022-03-01"), 163.2, 164.695, 166.6, 161.97, missing, 83474425)
 AssetPrice("AAPL", Date("2022-02-28"), 165.12, 163.06, 165.42, 162.43, missing, 95056629)

show_stats(ds) = @chain load(ds) begin  
  Stonks.groupby(_, [:symbol]) 
  Stonks.aggregate(_, [
    :date => maximum => :date_max,
    :date => minimum => :date_min,
    :symbol => length => :count
  ])
end

show_stats(ds)
NamedTuple{(:symbol, :date_max, :date_min, :symbols), Tuple{String, Date, Date, Int64}}[
  (symbol = "AAPL", date_max = Date("2022-03-01"), date_min = Date("2022-02-28"), count = 2),
  (symbol = "MSFT", date_max = Date("2022-03-01"), date_min = Date("2022-02-28"), count = 2)
]

# to is optional, defaults to latest workday. here, we need it for reproductible results.
update(ds; to=d_end)
show_stats(ds) 
# d_end (2022-03-06) is a Sunday, so the latest available data is from a Friday (2022-03-04).
NamedTuple{(:symbol, :date_max, :date_min, :symbols), Tuple{String, Date, Date, Int64}}[
  (symbol = "AAPL", date_max = Date("2022-03-04"), date_min = Date("2022-03-02"), count = 3),
  (symbol = "MSFT", date_max = Date("2022-03-04"), date_min = Date("2022-03-02"), count = 3)
]

d_start = d_end - Day(7)
# we add 2 new stocks to our store.
update(ds, [("IBM", d_start, d_end), ("AMD", d_start, d_end)], to=d_end)
show_stats(ds)
NamedTuple{(:symbol, :date_max, :date_min, :symbols), Tuple{String, Date, Date, Int64}}[
  (symbol = "AAPL", date_max = Date("2022-03-04"), date_min = Date("2022-03-02"), count = 3), 
  (symbol = "IBM", date_max = Date("2022-03-04"), date_min = Date("2022-02-28"), count = 5), 
  (symbol = "MSFT", date_max = Date("2022-03-04"), date_min = Date("2022-03-02"), count = 3),
  (symbol = "AMD", date_max = Date("2022-03-04"), date_min = Date("2022-02-28"), count = 5)
]
# update(ds, ["IBM", "AMD"]) - will include data since earliest available
# update(ds, vcat(symbols, ["IBM", "AMD"])) - will also update the existing symbols, 
# if there is new data

Advanced usage


Plug in any data format

using Arrow, Dates, Tables
using Stonks
using Stonks.Stores: apply_schema

function write_arrow(data::Vector{T}, path::String) where {T<:AbstractStonksRecord}
  open(path, "w") do io
    Arrow.write(io, to_table(data))
  end
end

function read_arrow(path::String, ::Type{T}) where {T<:AbstractStonksRecord}
  apply_schema(collect(Tables.rows(Arrow.Table(path))), T)
end

ds = FileStore{AssetPrice}(;
  path=joinpath(@__DIR__, "data/arrow"),
  ids=[:symbol],
  format="arrow",
  time_column="date",
  reader=read_arrow,
  writer=write_arrow,
)

data = [
  AssetPrice(; symbol="MSFT", date=Date("2022-02-16"), close=299.5),
  AssetPrice(; symbol="MSFT", date=Date("2022-02-17"), close=290.73),
  AssetPrice(; symbol="AAPL", date=Date("2022-02-17"), close=168.88),
  AssetPrice(; symbol="AAPL", date=Date("2022-02-18"), close=167.3),
]

save(ds, data)
readdir(ds.path)
# 1-element Vector{String}:
 "data.arrow"

load(ds)
# 4-element Vector{AssetPrice}:
 AssetPrice("MSFT", Date("2022-02-16"), 299.5, missing, missing, missing, missing, missing)
 AssetPrice("MSFT", Date("2022-02-17"), 290.73, missing, missing, missing, missing, missing)
 AssetPrice("AAPL", Date("2022-02-17"), 168.88, missing, missing, missing, missing, missing)
 AssetPrice("AAPL", Date("2022-02-18"), 167.3, missing, missing, missing, missing, missing)

Create API resources for your custom models

Assume we'll receive the following content from an API. Source: https://www.alphavantage.co/query?function=INFLATION&apikey=demo

 {
  "name": "Inflation - US Consumer Prices",
  "interval": "annual",
  "unit": "percent",
  "data": [
    {"date": "2020-01-01", "value": "1.2335"},
    {"date": "2019-01-01", "value": "1.8122"}
  ]
}
using Chain, Dates, JSON3
using Stonks: Stonks, APIResource, JSONParser

# Create your custom type
struct MacroIndicator <: AbstractStonksRecord
  name::String
  date::Date
  value::Number
end

# Define a function with the same signature as `parse_conent`
# parse_content(content::AbstractString; kwargs...) -> Vector{<:AbstractStonksRecord}
function parse_inflation_data(content::AbstractString; kwargs...)
  js = JSON3.read(content)
  from, to = get(kwargs, :from, missing), get(kwargs, :to, missing)
  return @chain js["data"] begin 
    map(x -> MacroIndicator(
      "US Consumer Prices", tryparse(Date, x[:date]), tryparse(Float64, x[:value])), _,
    )
    isa(from, Date) ? filter(row -> row.date >= from, _) : _
    isa(to, Date) ? filter(row -> row.date <= to, _) : _
  end
end

# Define an API resource, wrap your function around a subtype of AbstractContentParser.
# subtypes(Stonks.Parsers.AbstractContentParser)
# [Stonks.Parsers.JSONParser, Stonks.Parsers.CSVParser]
my_resource = APIResource{MacroIndicator}(;
  url="https://www.alphavantage.co/query",
  headers=Dict("accept" => "application/json"),
  query_params=Dict("function" => "INFLATION", "apikey" => "demo"),
  parser=Stonks.JSONParser(parse_inflation_data),
)

data = get_data(my_resource; from=Date("2019-01-01"))
foreach(println, data)
MacroIndicator("US Consumer Prices", Date("2020-01-01"), 1.23358439630637)
MacroIndicator("US Consumer Prices", Date("2019-01-01"), 1.81221007526015)

Create your client from combining API resources

using Stonks: Stonks, APIClient

yc = YahooClient("<my_secret_key>")
ac = AlphavantageJSONClient("<my_secret_key>")

my_client = Stonks.APIClient(Dict(
  "price" => ac.resources["price"],
  "info" => yc.resources["info"],
  "exchange" => yc.resources["exchange"], 
  # ... + your own custom resources
))
Stonks.APIClients.get_supported_types(my_client)
# 3-element Vector{DataType}:
 ExchangeRate
 AssetPrice
 AssetInfo

Contributing

The project uses git-flow workflow. If you want to add a new feature, open a branch feature/$feature-name and make a PR to develop branch. Reporting issues in Github issues is highly appreciated.

License


This project is licensed under the MIT License - see the LICENSE file for details.

Package Rankings
Top 25.53% on Juliahub.com